A novel metathesis route for the synthesis of La_2CuO_4 and its superconducting analogues: synthesis of a new lithium-substituted derivative of La_2CuO_4

Tapas Kumar Mandal, Nagasampagi Y. Vasanthacharya and Jagannatha Gopalakrishnan*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. E-mail: gopal@sscu.iisc.ernet.in

Received 26th July 2001, Accepted 8th November 2001 First published as an Advance Article on the web 14th January 2002

The metathesis reaction, $L_{12}CuO_2 + 2 LnOCl \rightarrow Ln_2CuO_4 + 2 LiCl$, (Ln = La, Nd), provides a convenient route for the synthesis of La_2CuO_4 and Nd_2CuO_4 at relatively low temperatures (700–800 °C). Use of Sr/Ba-substituted LaOCl in the above reaction enables synthesis of superconducting analogues, $La_{1.85}A_{0.15}CuO_4$ (A = Sr, Ba), as well. A new lithium-substituted derivative of nominal composition $La_{1.8}Li_{0.2}CuO_4$ has also been synthesized in the metathesis reaction between Li_2CuO_2 and $La(OH)_3$.

1 Introduction

There is continuing interest in La₂CuO₄ and its derivatives, not only because of superconductivity¹ in La_{2-x}A_xCuO₄ (A = Ca, Sr, Ba), but also because of many other properties. For instance, La₂CuO₄ and its derivatives are known to catalyze several chemical reactions,^{2–5} including CO oxidation, NO reduction and CH₄ oxidation, besides functioning as threeway automobile exhaust catalysts.³ La₂CuO₄ also exhibits unusual low temperature oxygen intercalation⁶ that renders it a superconductor as well as a mixed electronic oxide ion conductor. Accordingly, there is parallel interest in developing new routes for the synthesis of La₂CuO₄ and its derivatives. For example, Galkin *et al.*⁷ have recently reported a new route for the synthesis of La₂CuO₄ by simultaneous hydrolysis of La(III) and Cu(II) acetates in supercritical water followed by annealing the product at 600 °C for 5 h.

As a part of our interest in developing metathesis routes for the synthesis of oxide materials,⁸ we have investigated metathesis reactions in the solid state between Li_2CuO_2 and $LnOCl/La(OH)_3$ (Ln = La, Nd). Our investigations have not only provided a convenient route for the synthesis of La_2CuO_4 and its superconducting analogues, but also yielded a new lithium-substituted derivative of La_2CuO_4 in the reaction between Li_2CuO_2 and $La(OH)_3$. The details are reported in this paper.

2 Experimental

The starting materials, Li₂CuO₂, LaOCl, NdOCl, Sr/Badoped LaOCl and La(OH)₃, were prepared as reported in the literature.^{9–11} Li₂CuO₂ was prepared by reacting stoichiometric quantities of Li₂CO₃ and CuO at 600 °C for 24 h and 650 °C for 48 h in air with intermediate grindings.⁹ LnOCl (Ln = La, Nd) was prepared by reacting Ln₂O₃ (Ln = La, Nd; pre-dried at 900 °C) with an equal quantity of NH₄Cl at 300, 500 and 900 °C for 2–4 h each.¹⁰ Sr/Ba-substituted LaOCl was synthesized similarly from stoichiometric quantities of La₂O₃ (pre-dried at 900 °C), SrCO₃/BaCO₃ and NH₄Cl at 300 and 500 °C for 3 h each. La(OH)₃ was prepared hydrothermally by reacting 2 g of La(III) nitrate in 2 ml of H₂O and 7 g of NaOH in 7 ml of H₂O in a sealed Teflon bomb at 200 °C for 1 day.¹¹

The metathesis reaction,

$$Li_2CuO_2 + 2 LaOCl \rightarrow La_2CuO_4 + 2 LiCl$$
 (1)

DOI: 10.1039/b106806g

was investigated by heating stoichiometric mixtures of the reactants at various temperatures for a range of times air. The products were examined by powder X-ray diffraction. Single-phase La₂CuO₄ was formed in reaction (1) at 800 °C for 24 h. Nd₂CuO₄ was formed in a similar reaction at 700 °C for 24 h. The superconducting derivatives La_{1.85}A_{0.15}CuO₄ (A = Sr, Ba) were obtained by similar metathesis reactions between Li₂CuO₂ and La_{1 - x}A_xO_{1 - x/2} $\Box_{x/2}$ Cl (x = 0.075; \Box indicates vacancy). For this purpose, an intimate mixture of stoichiometric quantities of the reactants was heated at 800 °C for 24 h in air with one grinding in between, and the resulting product, after washing with water and drying in air, was pelletized and oxygen-annealed at 800 °C for 12 h.

In our efforts to synthesize a perovskite oxide, 'LiLaCuO₃', we obtained a new lithium-substituted derivative of La₂CuO₄ in the reaction between Li₂CuO₂ and La(OH)₃. The new derivative of nominal composition La_{1.8}Li_{0.2}CuO₄ was obtained in the reaction between 1 mol of Li₂CuO₂ and 2 mol of La(OH)₃ at 500 °C for 12 h, 600 °C for 12 h and finally at 800 °C for 12 h, with grindings between each stage.

The precursors as well as the product oxides were characterized by powder X-ray diffraction (XRD) using a JEOL JDX-8P X-ray powder diffractometer (Cu-K α radiation). Lattice parameters of single-phase products were refined by least-squares refinement of the powder diffraction data using the PROSZKI program.¹² Scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX) studies were carried out using a JEOL JSM-840A scanning electron microscope. The oxidation state of copper in La₂CuO₄ derivatives was determined by iodometric titration¹³ using KI. Electrical resistivity measurements were carried out on sintered pellets by the standard four-probe technique in the temperature range 25–300 K using a closed cycle helium cryostat. DC magnetic susceptibility for the lithium-substituted sample was measured in the temperature range 25–300 K using a Lewis coil magnetometer (George Associates, model 2000).

3 Results and discussion

We investigated metathesis reaction (1) between Li_2CuO_2 and LaOCl at temperatures from 500 °C increasing in increments of 50 °C for reaction times of 12 and 24 h. We found that single-phase La_2CuO_4 was formed at 800 °C after 24 h reaction with

Table 1 Synthesis by the metathesis route and characterization of La₂CuO₄ and its derivatives

	Reaction conditions	Lattice parameters/Å				
Composition		a	b	с	Property	
$ \begin{array}{c} La_2CuO_4 \\ Nd_2CuO_4 \\ La_{1.85}Sr_{0.15}CuO_4 \\ La_{1.85}Ba_{0.15}CuO_4 \\ La_{1.8}Li_{0.2}CuO_4 \end{array} $	800 °C/24 h 700 °C/24 h 800 °C/24 h in air; 800 °C/12 h in oxygen 800 °C/24 h in air; 800 °C/12 h in oxygen 500 °C/6 h; 600 °C/6 h; 800 °C/12 h	5.360(1) 3.950(1) 3.791(1) 3.806(1) 3.750(1)	5.404(1)	13.157(3) 12.179(3) 13.223(3) 13.257(4) 13.292(5)	Insulator Insulator Superconductor (onset $T_c = 36$ K) Superconductor (onset $T_c = 38$ K) Semiconductor	

one intermediate grinding. The refined lattice parameters (Table 1) found for our sample are in good agreement with the values already reported in the literature.¹⁴ The formation of La₂CuO₄ is further confirmed by the EDX analysis, which shows the expected 2:1 La:Cu ratio and the absence of any chlorine impurities. The SEM studies show that the particle sizes are in the range 2–4 μ m.

The temperature of formation (800 °C) of La₂CuO₄ by the metathesis reaction is considerably lower than the temperatures $(1000-1200 \degree C)^{15}$ at which La₂CuO₄ is formed in the ceramic reaction between La₂O₃ and CuO; it is however higher than the formation temperature (600 °C) reported by Galkin⁷ *et al.* using supercritical water as a medium. In a similar reaction between Li₂CuO₂ and NdOCl (1:2 molar ratio) at 700 °C for 24 h, we have synthesized Nd₂CuO₄. This temperature is considerably lower than the usual synthesis temperature¹⁶ (1100 °C) of Nd₂CuO₄ by the direct reaction between Nd₂O₃ and CuO.

More importantly, we have synthesized superconducting La_{1.85}A_{0.15}CuO₄ (A = Sr, Ba) in the reaction between Li₂CuO₂ and La_{1 - x}A_xO_{1 - x/2} $\square_{x/2}$ Cl (A = Sr, Ba; x = 0.075).

The superconducting phases formed in the metathesis reaction have been characterized by powder XRD. The lattice parameters and the superconducting transition temperatures (onset $T_c = 36$ and 38 K, respectively) (Table 1) determined by resistivity measurements (Fig. 1) are in agreement with the corresponding data reported in the literature.^{1,14,17}

A comment about the possible mechanism of the metathesis reaction is in order. In the recently reported metathetical transformation⁸ of Ruddlesden–Popper oxides $[K_2La_2Ti_3O_{10}]$ to Aurivillius phases $[(Bi_2O_2)La_2Ti_3O_{10}]$, the structural integrity of the perovskite sheet and (Bi_2O_2) sheet is preserved. In the metathesis reaction reported here, there seems to be no obvious retention of structural features in view of the differences between the structures of the parent Li₂CuO₂ and product La₂CuO₄ (Fig. 2). The metathesis reported here is

Fig. 1 Electrical resistivity data for (a) $La_{1.85}Sr_{0.15}CuO_4$ and (b) $La_{1.85}Ba_{0.15}CuO_4$. The inset shows the data for (c) $La_{1.8}Li_{0.2}CuO_4$.

Fig. 2 Structures of (a) Li₂CuO₂, (b) LaOCl and (c) La₂CuO₄.

probably more like the conventional metathesis^{18,19} where the reaction is driven by the high lattice energy of LiCl and its low melting point (605 °C). Molten LiCl would act as a medium for the facile formation of La₂CuO₄ and its derivatives at relatively low temperatures.

Having synthesized La_2CuO_4 and its derivatives, we explored the possibility of synthesizing other cuprates by the metathesis route. One of the long-standing challenges in copper oxide chemistry is to synthesize three-dimensional perovskites containing Cu^{II}. We envisaged that a perovskite-related oxide of the formula 'LiLaCuO₃' would exist when additional Li⁺ ions are inserted into the LaCuO₃ framework, in a manner similar to that in (LiLa)TiO₃.²⁰ To realize this possibility, we explored the following metathesis reaction

$$Li_2CuO_2 + La(OH)_3 \rightarrow LiLaCuO_3 + LiOH + H_2O$$
 (3)

at various temperatures (300–800 °C) and durations (6–24 h). The reaction product, however, was a mixture of a tetragonal La_{2 – x}A_xCuO₄-like phase along with CuO. Accordingly, we believed that a new Li-substituted La₂CuO₄ derivative was obtained in reaction (3), instead of 'LiLaCuO₃'. To prepare a single-phase Li-substituted La₂CuO₄, we carried out the reaction between Li₂CuO₂ and La(OH)₃ in a 1:2 molar ratio. We obtained a tetragonal K₂NiF₄-like phase of nominal composition, La_{1.8}Li_{0.2}CuO₄, in reaction (4) (Table 1).

$$\begin{array}{c} \text{Li}_{2}\text{CuO}_{2}+1.8 \text{ La}(\text{OH})_{3}+0.1 \text{ O}_{2} \rightarrow \text{La}_{1.8}\text{Li}_{0.2}\text{CuO}_{4}\\ +1.8 \text{ LiOH}+1.8 \text{ H}_{2}\text{O} \end{array} \tag{4}$$

Iodometric titration¹³ showed that the oxidation state of copper in the product is 2.4 ± 0.02 , consistent with the formulation La_{1.8}Li_{0.2}CuO₄. Formation of La_{1.8}Li_{0.2}CuO₄ instead of La₂CuO₄ in the reaction between Li₂CuO₂ and La(OH)₃ is most likely due to the presence of LiOH formed *in situ* in the reaction, which would act as an oxidizing flux. Molten NaOH/KOH is known to act as an oxidizing flux in the formation of superconducting La_{2-x}Na_xCuO₄ and La_{2-x}K_xCuO₄.²¹

The powder XRD pattern of La_{1.8}Li_{0.2}CuO₄ could be indexed on a tetragonal (*I*4/*mmm*) structure similar to that of La_{1.85}Sr_{0.15}CuO₄ (Table 2). Significantly, Na/K-substituted La₂CuO₄ crystallizes in a primitive tetragonal structure,²²

Table 2 X-Ray powder diffraction data for La_{1.8}Li_{0.2}CuO₄

	• •						
h k l	$d_{\rm obs}$ /Å	$d_{\rm calc}{}^a/{ m \AA}$	$I_{\rm obs}$	$I_{\text{calc}}^{\ \ b}$			
101	3.623	3.609	25	15			
004	3.334	3.323	14	10			
103	2.866	2.862	100	100			
110	2.652	2.652	64	65			
112	2.486	2.463	1	1			
006	2.217	2.215	11	13			
105	2.171	2.169	18	24			
114	2.074	2.073	32	25			
200	1.875	1.875	28	33			
116	1.700	1.700	10	12			
107	1.692	1.694	11	11			
211	1.664	1.664	8	5			
008	1.663	1.662	6	4			
204	1.633	1.633	7	6			
213	1.568	1.568	32	35			
206	1.430	1.431	11	12			
215	1.417	1.418	10	11			
118	1.407	1.408	8	8			

 $^{a}a = 3.750(1); c = 13.292(5)$ Å. ^bIntensities have been calculated by LAZY PULVERIX¹² using the atomic coordinates of La_{1.85}Sr_{0.15}CuO₄ (ref. 13) where the Sr is replaced by Li and the occupancy factors adjusted according to the composition La_{1.8}Li_{0.2}CuO₄.

Fig. 3 Magnetic susceptibility data for La_{1.8}Li_{0.2}CuO₄.

space group P4/nmm. Careful examination of the powder XRD pattern of La_{1.8}Li_{0.2}CuO₄, however, did not show reflections characteristic of P4/nmm symmetry. Moreover, measurement of the electrical resistivity (Fig. 1) and magnetic susceptibility (Fig. 3) revealed the absence of a superconducting transition above 10 K. The material is a semiconductor, showing Curie-Weiss paramagnetism above 60 K with a $\mu_{\rm eff} = 1.04 \,\mu_{\rm B}$; $\theta = -220$ K. The $\chi_{\rm M}^{-1}-T$ plot (Fig. 3) shows a magnetic transition around 60 K, with an enhancement of susceptibility below this temperature. A similar susceptibility enhancement occurs in non-superconducting $La_{2-x}Sr_{x}CuO_{4-\delta}$ samples²³ for $x \ge 0.5$. The enhancement in susceptibility could signal a ferromagnetic interaction²⁴ Cu^{II} $(d_{x^2 - y^2})^1$ –O–Cu^{III} $(d_{x^2 - y^2})^0$ (localized holes) in overdoped La₂CuO₄-derived oxides.

The absence of superconductivity and the difference in the space group of La_{1.8}Li_{0.2}CuO₄ as compared to that of $La_{1 - x}Na_{x}CuO_{4}$ and $La_{1 - x}K_{x}CuO_{4}$ suggests that Li atoms

are likely distributed over both La and Cu sites. We believe that the La_{1.8}Li_{0.2}CuO₄ prepared by us is not exactly the same as the $La_2Cu_1 - {}_xLi_xO_4$ reported in the literature,^{25,26} in view of the differences in electrical and magnetic properties. Further work is required to characterize the Li-substituted La2CuO4 obtained in the metathesis reaction between Li₂CuO₂ and La(OH)3.

4 Conclusions

We have described a novel metathesis reaction between Li_2CuO_2 and LnOCl (Ln = La, Nd) in the solid state which provides a convenient route for the synthesis of La₂CuO₄ and Nd₂CuO₄ at relatively low temperatures (700-800 °C). More importantly, the route enables synthesis of superconducting $La_{1.85}A_{0.15}CuO_4$ (A = Sr, Ba) by using Sr/Ba-substituted LaOCl in the reaction. We have also synthesized a new lithium-substituted La₂CuO₄ of nominal composition, La_{1.8}- $Li_{0,2}CuO_4$, in the reaction between Li_2CuO_2 and 2 $La(OH)_3$.

Acknowledgement

We thank the Department of Science and Technology, Government of India, for financial support. T. K. M., is grateful to the University Grants Commission, New Delhi, for the award of a fellowship.

References

- J. G. Bednorz and K. A. Müller, Z. Phys. B: Condens. Matter, 1 1986, 64, 189.
- S. Rajadurai, J. J. Carberry, B. Li and C. B. Alcock, J. Catal., 1991. 131. 582
- 3 N. Guilhaume, S. D. Peter and M. Primet, Appl. Catal. B, 1996, 10, 325
- 4 R. Doshi, C. B. Alcock, N. Gunasekaran and J. J. Carberry, J. Catal., 1993, 140, 557.
- 5 N. Gunasekaran, A. Meenakshisundaram and V. Srinivasan, Indian J. Chem., 1982, 21A, 346.
- N. Casan-Pastor, C. Zinck, C. R. Michel, E. M. Tejada-Rosales 6 and G. Torres-Gomez, *Chem. Mater.*, 2001, **13**, 2118. A. A. Galkin, B. G. Kostyuk, V. V. Lunin and M. Poliakoff,
- 7 Angew. Chem., Int. Ed., 2000, 39, 2738.
- 8 J. Gopalakrishnan, T. Sivakumar, K. Ramesha, V. Thangadurai and G. N. Subbanna, J. Am. Chem. Soc., 2000, 122, 6237.
- 9 R. Hoppe and H. Rieck, Z. Anorg. Allg. Chem., 1970, 379, 157.
- 10 L. H. Brixner and E. P. Moore, Acta Crystallogr., Sect. C, 1983, 39, 1316.
- 11 Handbook of Preparative Inorganic Chemistry, ed. G. Brauer, Academic Press Inc., New York, 2nd edn., 1965, vol. 2, p. 1152.
- 12 Least-squares refinement of powder XRD data and intensity calculations were carried out using the PROSZKI program which includes LAZY PULVERIX: W. Lasche and K. Lewinski, J. Appl. Crystallogr., 1994, 27, 437.
- D. C. Harris and T. L. Hewston, J. Solid State Chem., 1987, 69, 13 182
- 14 K. Yvon and M. Francois, Z. Phys. B: Condens. Matter, 1989, 76, 413.
- 15 J. M. Longo and P. M. Raccah, J. Solid State Chem., 1973, 6, 526. A. C. W. P. James and D. W. Murphy, in Chemistry of 16 Superconductor Materials, ed. T. A. Vanderah, Noyes Publica-
- tions, Park Ridge, NJ, 1992, p. 427. 17 J. P. Attfield, A. L. Kharlanov and J. A. McAllister, Nature, 1998,
- 394, 157 and references therein.
- E. G. Gillian and R. B. Kaner, Chem. Mater., 1996, 8, 333. 18
- 19 I. P. Parkin, Chem. Ind., 1997, 725.
- J. A. Alonso, J. Sanz, J. Santamaría, C. León, A. Várez and 20 M. T. Fernández-Díaz, Angew. Chem., Int. Ed., 2000, 39, 619.
- 21 W. K. Ham, G. F. Holland and A. M. Stacy, J. Am. Chem. Soc., 1988, 110, 5214.
- S. L. Stoll, A. M. Stacy and C. C. Torardi, Inorg. Chem., 1994, 33, 22 2761.
- 23 R. Sreedhar and P. Ganguly, Phys. Rev. B, 1990, 41, 371.
- The possibility of a ferromagnetic coupling between Cu^II d 24
 - electrons and localized holes in cuprates has been suggested:

Y. Guo, J-M. Langlois and W. A. Goddard III, *Science*, 1988, 239, 896.
J. P. Attfield and G. Férey, *J. Solid State Chem.*, 1989, 80, 112.

- 26 J. L. Sarrao, D. P. Young, Z. Fisk, E. G. Moshopoulou, J. D. Thompson, B. C. Chakoumakos and S. E. Nagler, *Phys. Rev. B*, 1996, **54**, 12014.